

CONFERENZA DI DIPARTIMENTO 2018

Assisi, 24-26 September 2018

Presented by:

Angela Gondolini

Production of ceramic multilayers for energy applications

- Solid Oxide Cells (SOCs)
- Gas Separation Membranes (GSMs)

C istec

16.0

 $Ni - Ce_{0.9}Gd_{0.1}O_{3-d}$ (GDC)

Deposition of more than one layer

EVOLVE

FE HIS MONOGEN NOW UNDER

C istec

$La_{0.1}Sr_{0.9}TiO_{3-\alpha}$ - GDC

Properties:

- Catalytic
- Conductivity
- Chemical Stability

Tolerance to:

- Sulfur poisoning
- C deposition
- Redox cycles

Electrode efficiency

Powder Treatment

Milling & Sonication ↑ SSA

Outlet

NO HYDROGEN JO

No

A Gondolini et al. Journal of the European

↓Polarization↑ Efficiency

bubbler

exhaust

reaction chamber furnace

FUEL CELL

C istec

GAS SEPARATION MEMBRANES

Selective Separation of gases (O2, H2) using dense ceramic membranes

 \rightarrow Electrochemical Mechanism

histec

Ministero dello Sviluppo Economico

Compatibility with literature data for $BaCe_{0,65}Zr_{0,20}Y_{0,15}O_{3-\delta}$

H₂ SEPARATION MEMBRANES

D. Montaleone et al. J. Mater. Chem. A, 2018, 6, 15718

H₂ SEPARATION MEMBRANES RdS

Ministero dello Sviluppo Economico

Membrane Material	Thickness dense membrane (μm)	Gas atmosphere Feed - Sweep	Т (°С)	J _{H2} (mL min ⁻¹ cm ⁻²)
SrCeO ₃ -based hydrogen separation membranes				
SrCe _{0,95} Y _{0,05} O _{3-δ}	50	dry 80% H ₂ in He - Ar	950	0.1
SrCe _{0,95} Tm _{0,05} O _{3-δ}	150	dry 10% $\rm H_2$ in He - 20% $\rm O_2$ in $\rm N_2$	900	0.16
$SrCe_{0,7}Zr_{0,2}Eu_{0,1}O_{3-\delta}$	33	dry 100% H ₂ - He	900	0.23
		wet (3% H_2O) H_2 - He	900	0.21
BaCeO ₃ -based hydrogen separation membranes				
$BaCe_{0,85}Tb_{0,05}Zr_{0,1}O_{3-\delta}$	20 / 50	dry 50% H_2 in He - Ar	900	0.22 / 0.08
$BaCe_{0,65}Zr_{0,20}Y_{0,15}O_{3-\delta} - Ce_{0,80}Gd_{0,20}O_{2-\delta}$	20	wet 50% H ₂ in He - wet Ar	750	0.47
$BaCe_{0,65}Zr_{0,20}Y_{0,15}O_{3-\delta} - Ce_{0,80}Gd_{0,20}O_{2-\delta}$	20	dry 50% H ₂ in He - wet Ar	750	0.68
$BaCe_{0,65}Zr_{0,20}Y_{0,15}O_{3-\delta} - Ce_{0,80}Gd_{0,20}O_{2-\delta}$	650	wet 50% H ₂ in He - wet Ar	755	0.27
$Ni-BaCe_{0,7}Zr_{0,1}Y_{0,2}O_{3-\delta}$	30	wet 50% H_2 in N_2 - Ar	750	0.15
$Ni\text{-}BaCe_{0.95}Tb_{0.05}O_{3\text{-}\delta}$	90	dry 50% H_2 in N_2 - He	750	0.55
$Ni-BaCe_{0,7}Zr_{0,1}Y_{0,1}Yb_{0,1}O_{3-\delta}$	44	wet 50% H_2 in He - N_2	750	0.46
Other ceramic systems				
La _{26,78} W _{5,22} O _{55,83}	25	wet 10% H ₂ in Ar - Ar	1000	0.14
Ce _{0,8} Sm _{0,2} O _{2-δ}	35	dry 40% H_2 in N_2 - Ar	900	0.007

POWDER SYNTHESIS

Applications:

- Catalysis
- Phase wiht good ionic conductivity for SOC e SM applications

POLYOL METHOD

Direct nucleation in poly alcohol solvent (eg. EG o DEG), starting from a precursor solution

→ Nanometric powder

Microwave heating is used:

- Fast & homogeneous
- In situ cristallization

CeO₂ POWDER SYNTHESIS

C istec

CeO₂ POWDER SYNTHESIS

Ce_{1-x}Gd_xO_{2-d} POWDER SYNTHESIS

Ce_{1-x}Gd_xO_{2-d} POWDER SYNTHESIS

A Gondolini et al. Journal of the European Ceramic Society 33 (1), 67-77

C istec

Young Investigator Award 2018

Premio YIA2018 - Chimica per l'Energia Rinnovabile

THANKS FOR YOUR KIND ATTENTION